
I

AD-A267 1461I I~lllll~li lmlli

Bounds on Inconsistent Inferences for Sequences of

Trials with Varying Probabilities

Herman Chernoff and Yingnian Wu

Harvard University
Cambridge, MA 02139

Technical Report No. ONR-C-13

fDTIr"

.SJUL 22
June 21, 1993 Iv " 1993 b

Reproduction in whole or in part is permitted for any
purpose of the United States Government.

This document has been approved for public release and
sale, its distribution is unlimited.



SECURITY CLASSIFICATION OF "..S PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION 1 . RESTRICTIVE MARKINGS

UNCLASSIFIED(

I!a. SECURITY CLASSIFICArION AurHORITY . oISTRIeUrTONIAVALASIUT'Y OF REPORT

2b. DECLASSiFICATION i DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

ONR-C-13

6a. NAME OF PERFORMING ORGANIZATION 5b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Department of Statistics 1 If applicable)

Harvard University I
6C. ADDRESS (CtyM State. and ZIPCode) 7b. ADDRESS (Cr)M State. and 21P Code)

Department of Statistics, Rm. SC713

Harvard University

Cambridge, MA 02138 ,

Ba. NAME OF FUNDING I SPONSORING 8 Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION " (If applicable)

Sj Code 1111

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Office of Naval Research PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22217-5000 ELEMENT NO. NO. NO. ACCESSION NO

11. TITLE (Inciuae Security COasmsacation)

Bounds on Inconsistent Inferences for Sequences of Trials with Varying Probabilities 1
12. PERSONAL AUTHOR(S) Herman Chernoff and Yingnian Wu

13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year. Month, Day) IS. PAGE COUNT
" Technical Report FROM TO June 21, 1993 17

SUPPLEMENTARY NOTATION

t7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by blocir number)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on revene if necessary and identify by block number)

See reverse side.

93-7654

20 DISTR'ISONAV & § OF AFST RACf 21 ABSTRACT SECURITY CLASSIFICATION

_UICLAVIFIEDI --DMITED E3 SAME AS RPT 0 OTIC USERS
22a NAME OF RESPONSIBLE NOIvIDUAL 22b 7E .EPHONE (IntluOe Area Code) .2c. OFFICE SYMBOL

Herman Chernoff 617-495-5462

nD FORM 1473, a4AAR 83 APR e~otion may e used u$ritel aus0leO SFC RITV CLASS;FICATION OF THIS PAGE
A: V 9o•" ', • . r, '. c ,UNCLASSIFIED



Bounds on Inconsistent Inferences for Sequences of
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Herman Chernoff and Yingnian Wu
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ABSTRACT

Consider independent pairs of Bernoulli trials on two unknown sequences of proba-
bilities p(l) = 1p 1 < i < n} and p(2) = {Pý2) : 1 < i < n}. The data are the
numbers of pairs which consist of (0,0), (0,1), (1,0), and (1,1) and can be summarized
in a two-way table with entries noo, no,, n1 o and n2l adding up to n. The two
problems of estimating the mean and variance of the number of discordant pairs n01 + n1 0
when H0 : p(l) = p(2) is true, and of testing H0 using the number of discordant pairs
as a test statistic are considered. Two novel issues arise. While relevant parameters can
not be estimated consistently from the available data, useful bounds on these can be ae-
rived. While the test is poor for alternatives typically considered in the literature, it may
be effective for detecting the presence of unknown explanatory factors which discriminate
between supposedly matched pairs.
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1. Introduction.
The following two problems were posed in response to a question verbally posed by two

geneticists. It turned out that the problems did not address their questions which could be
answered by reference to U statistics. This left two problems of some theoretical interest,
but with no apparent application. The recall of previous unpublished work by Cornfield and
Greenhouse (1975) led to subsequent discussions with S. Greenhouse and J. L. Gastwirth
which suggest potential applications of these problems to issues in discrimination.

Consider independent pairs of independent Bernoulli observations on two sequences of
probabilities p(l) = {jpl) : 1 < i < n} and p(2) {p2) 1 < i :5 n}. In biostatistical

and discrimination applications one is often interested in knowing whether the p~l) tend
to be greater than the pý2). The data provide only four useful items of information for
this situation involving 2n parameters. These are the numbers of pairs which consist of
(0,0), (0,1), (1,0) and (1,1) respectively, and can be summarized in a two-way table with
entries n00 , n0 1 , nio and nil adding up to n. In many such applications it is reasonable
to formulate a test of the null hypothesis H0  p) - p1 1 1 i < n by postulating that

the odd-ratios
•bi .- /(i "" --

are all equal to a common value 0 and to test whether b = 1. Several recent examples

are Gastwirth and Greenhouse (1987) and Yu (1993).
An interesting case for analysis is that where n00 =nil = 1,000, n10 = 20 but

nol = 5. While the overall success rates for both cases are almost equal, it is clear that
the discrepancy between ni 0 and n01 is statistically significant and could lead to rejecting
H0 if that hypothesis were seriously intended. While this example would fail to prove that
one treatment is much better than another (in a case where two treatments were applied to
n matched pairs of individuals) the McNemar test would clearly demonstrate that there is
a small subpopulation on which the treatments have a decidedly different effect. In other
words, it would be evidence of the presence in the population of an explanatory factor
discriminating among supposedly matched pairs, and which may or may not be important
to uncover.

Another example, related to the problems we shall pose, is that where the data consist
of noo = nil = 0 and nlo = 100 = no1 . In this case there is no indication that there is

an overall tendency for the pýl) to exceed the . Nevertheless in discrimination cases
the data clearly show that subjects were treated differently, depending on the existence of
some hidden factors.

The problems originally posed are the following.
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Problem 1. Assuming that Ho: P) (P) -pi for 1_<i_<n, where p={pi: I _<
i _< n} is unspecified, what can be said about the mean and variance of

D = (no, + nio)/n ?

Problem 2. Test the hypothesis Ho using D as a test statistic.
Because of the paucity of data, it is unlikely that D will be an effective test statistic

for testing H0  in most applications. Nevertheless, as the second example indicates,
there may be situations where D leads to rejecting H0 and reveals the existence of an
effective explanatory factor which may be worth discovering. We shall see that while it
is impossible to estimate accurately the variances of estimates or the significance levels of
tests, useful bounds on these may be derived. In Section 4 we shall generalize to the use of
(al rio + a 2 no1 )/n as a test statistic. Note that as long as a, and a2 are positive or
have the same sign, the uzc of this generalization attacks the side issue of hidden factors

(2)rather than the usual issue of whether the Al') tend to exceed the pi2)

In Section 5 we shall consider the case where there are three observations on p and
that where there are two observations on p(l) and one on p(2).

Almost all of the derivations will appear in the appendices which will make extensive
use of the Geometry of Moments presented in Karlin and Shapley (1953). Certain aspects
of the geometry of the space of (noo, n0o, nio, n1l) are discussed in Fienberg and
Gilbert (1970) and in Diaconis (1977). Fienberg and Gilbert discuss, among others, the
set on which there is a common odds ratio. Diaconis is interested in aspects relevant to
exchangeability.

2. Problem 1.
We may regard D as the average of n Bernoulli random variables Di where

Di = 1 if the i-th pair doesn't match, i.e., the pair consists of (1,0) or (0,1). Then the
expectation and variance under H0 are given by

EoDi = 2pi(l - pi) = d-o)

and

Varo(D,) = d°)(1 - do)).

Thus

(2.1) Ao = EoD = n-1  
-d•°) =C(d(°)) = 2 6{p(l -p)}

where . stands for the average over the n subscripted values. Similarly

(2.2) ao = nVaro(D) = 6{d(°)(1- d(°))} = £{2p(l - p)(1 - 2p(l - p))}
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While D can be used as an estimate of Ao, aro can not be estimated consistently from
the available data. On the other hand, it is easy to see that 0 :5 A0 _5 2 C(p)[1 -C(p)] _ 1/2
and we shall show in Appendix A3 that for a given Ac,

(2.3) Ao/2 < ao2 < Ao(1 - Ao)

Note that the ratio
Ao(1 - Ao) -2(1-A)

Ao/2

ranges from 2 to 1 as A0 ranges from 0 to 1/2 and that the difference

Ao(1 - Ao) - Ao/2 = Ao(1/2 - Ao)

ranges from 0 to 1/16 and back to zero, peaking at A0 = 1/4.

Treating the Di as i.i.d. Bernoulli random variables with common probability A0
would give the correct mean for D but could possibly overestimate the variance by a

factor of 2(1 - A0) which is close to 2 if A0 is small. That means that a naive
confidence interval for A0 based on the assumption of a common probability would be
conservative, and possibly by as much as a length factor of v/.

More precise bounds are derived in Appendix A3 making use of 7r = C(p) which can
also be estimated from the data. Using ir leads to relatively minor improvement of the
upper bound. It has no effect on the lower bound in the triangle of (ir, A0 ) values with
vertices (0, 0), (1, 0), and (1/2, 1/2), but it leads to substantial improvement near the

upper boundary where Ao = 2ir(1 - ir).

3. Problem 2.
Since A0 = E0D in Problem I can range from 0 to 1/2, it follows that D can be

used to reject Ho only if D is significantly greater than 1/2. However if C(p) were
known, then A0- = EoD = 26(p(l - p)) _5 2[E(p) - [E(p)] 2] and we could reject Ho for
values of D < 1/2 provided they were significantly greater than 26(p)[1 - E(p)]. Not

knowing C(p), we could estimate it and use as our test statistic

(3.1) T = D - 2f'(I - f')

where f" = (fr(I) + fr(2))/2, fr(1) = (ni 0 + nul)/n, and fr(2) = (no1 + n11)/n. Under
the general assumptions where p(') is not necessarily equal to p(2), we define p =

(p(I) + p(2))/2 and then fr, f.(l) and *(2) are estimates of 7r = £(p), 7r(l) = E(p(-))

and 7r(2) -= (p( 2 )) respectively.

We see in Appendix A4 that

(3.2) E(T) = [A - 27'(1 - 7r)] + _LC{p(1)(1 - p(1)) + p(2)(1 - p(2))}

3



where

(3.3) A = E(D) = £(d)

and d, = E(D,) = p')(1- + P))+p2)( -_ pl)) for 1 < i < n. The expression for
E(T) may be regarded as the sum of two terms, the second of which is O(n- 1 ) and is
bounded from above by [7rw()(1 - rw()) + 7r( 2)(1 - wr(2))]/2n. Under the hypothesis, the
main term of EO(T) is Ao - 2w(l - 7) = -2a, Where a

Neglecting terms of higher order, the variance of T is seen to be approximated by
n-1 T 2 where

(3.4) =2 = &{47r2d - 4(2v - 1)pd - d2) - (27r - 1)2,c((p( 1 ) - p(2))2)

Under the hypothesis H0 , this variance becomes

(3.5) r02(7r, Ao) = 47r2 AO - 127r4 + (4 - 167r + 24V2r)(ir - Ao/2) - 4(p- _w)4 .

To study the range of the main term in E(T), A - 2wr(1 - 7r), we demonstrate in
appendix A5 that

(3.6a) 0 < Ir(1) _ 7r(2)1 _< A < 27r if 0 _< 7r < 1/2

and

(3.6b) 0 < Iwr(') _- 7(2)1t A 5 2(1 - r) if 1/25 <ir < 1.

and that these inequalities are sharp given 7r(1) and 7r(2). Without specifying 7r()1 and
7r(2), which can be estimated from the margins, we see that (wr, A) lies in the triangle
with vertices (0, 0), (1/2, 1), and (1, 0). Under the hypothesis (wr, Ao) is restricted to
the subset of the triangle under the parabola A0 = 27r(1 - 7r). Where (7r, A) lies in the
triangle depends on the value of a 12 = £(p( )p(2 )) - 7r(')7r . When (r, A) lies above
the triangle, E(T) is positive, the hypothesis is not true, and we will be able to reject
H0 with enough data. If (7r, A) lies below the parabola, E(T) _5 0 and the hypothesis
may or may not be true, but we will not be able to use T to reject the hypothesis. Of
course other test statistics could be effective if we were aiming seriously at testing Ho. In
particular it would be easy to detect deviations from V( 1 ) = 7r(2).

To maximize T0 subject to given values of A0 = £(2p(l - p)) and ir = C(p) one

must minimize

V1 = E(p- 7r)".

It is easy to see that the minimum of V1, unrestricted by the condition 0 < p _• 1, is
achieved by p = ?r ± ap each with probability 1/2. When 7r - ap < 0 or 7r + op > 1,
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we see in Appendix A3 that the restricted minimum is achieved by one of the 2 point
distributions assigning probability 9 at q and 1 -0 at 0 or 1, for appropriate values
of q and 0. In each case 7r and A0 determine q and 0. Let

(3.7) V2(7r, u) = u2 (u 6 + 7r6)/[7r2 (0 2 + ?r2)]

The minimum of V, is

(3.8a) Vim= -4 if p < 7rm = min(r, 1 - r),

and otherwise

(3.8b) Vim = V 2('rm,,p).

The maximum of V1 is also attained by a two point distribution involving 0 or 1 if
0 _< Tm < 1/4, and is then

(3.8c) VIM = V2 (1 - 7r., rp)

If 1/4 < 7r < 1/2 then VM may be V2(1 - 7rTm, a•) or may be attained by a 3 point
distribution involving 0, 1, and q = med(ql, q2 ,27r - 1/2) where q, = [r - 7(p2)/(1-r)
and q2 = E(P2)/7r.

Then 7T0 is bounded above and below by roM(7r, Ao) and rom(7r, Ao) where these
are derived from r.2 by replacing £(p - 7r)4 by Vim and VIM respectively, and where

(3.9) A0 = 2[ir(1 -- 7r) - p2].

For large n

(3.10) Z 1/2 [D - 2*(1 - f)]
To(T, D)

should be approximately normally distributed with mean less than or equal to 0 and
variance 1 when the hypothesis Ho is true. The expectation of T and the bounds on
ro provide corresponding approximate bounds to the probability of rejection, when the
hypothesis is true, for a test using T as the test statistic.

For a given joint distribution for (pýl),'p 2 )) it is possible to calculate E(T) and r
and to estimate the corresponding noncentrality parameter and the power of the test of HO.
For illustrative and computational purposes a mixture of independent beta distributions of

k

the form f(ql,q 2 ) = ZwiBe(ql; cri, fli)Be(q2 ; a2i, 0 2i) might be suitable. To calculate
t=1

bounds on the power function of the test without assuming a proposed distribution, we

5



should calculate bounds on r 2 for given 7r( 1), ?r(2) and A, which may be estimated from
the data. Of course if 7r( 1) and 7r(2) are not close, their estimates would clearly indicate
that H0 is not true. But our use of Z is directed more at detecting hidden explanatory
factors than at testing the validity of H0 . In any case, bounding r 2 involves minimizing
and maximizing the variance of (p(l) - 7r(1))(p( 2 ) - 7r(2)) subject to specified values of

7r(1), r(2) and £(p(,) (2 )). This problem is discussed in Appendix 6.

4. Generalization of T.
The test statistic T treats the pair (1,0) the same as (0,1). To direct the test

toward detecting specific alternatives where one of these pairs is more likely to occur than
another, we may apply the test statistic

(4.1) T, = (a, n1 o + a2nol)/n - (a, + a2 )*(1 - fr)

Then, we see in Appendix A4, that

ET 1 = -(al + a2)a 1 2 + al -a 2 (7r(l) - (?2)) + a, _ 7r(2)-

2 4

(4.2) + a, + a2 ,[p(,)( 1 -p ()) +p(2 (1 2 p(2))]
4n

where

(4.3) a12 = -(p(1)p(2) 7r(1)7 (2) _ .(1)(1 _ 7r( 2 )) + lr( 2)(1 _ ir( 1)) - A]2

Also Var (TI) = n- r7, plus higher order terms where

.= -Eb P(')(1 - p )) + b p( 2)(1 _ p(2)) + (a1 + a 2 )2p(1)p( 2)(1 -

(4.4) -2(al + a2)p(1)p(2) [b, (1 - p(1)) + b2(1 -p())]

where

(4.5a) b, = (a, + a2 )7r + (a, - a2)/2

and

(4.5b) b2 = (a, + a2 )7r - (a, - a2)/2.

Incidentally b, + b2 = 27r(a, + a2 ), bi - b2 = a, - a2 , bb2 = 7r2 (al + a2 )2 - [(a, - a 2)/2]2.
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5. Multiple Observations.
The difiiculties in bounding the basic parameters in the inferences in our problems

are mitigated when more observations are available on each Pi.

5.1 Problem I With 3 Observations.

Suppose r'aLt in Problem 1, we had 3 observations leading to the data n0, n1 , n2 , n3

where nj is the number of i values (trials) for which we observe j successes. Then

(5.1) Eo(nj/n)= (3 ){p(1 -p) 3 -j}, j = 0,1,2,3

and we can estimate E(p), E(p 2) and g(p 3 ), since

Eo[(3n3 + 2n 2 + nl)/3n] = E(p)

Eo[(3n 3 +- n2)/3n] = gp2)

(5.2) Eo[na/l=] 6(p3)

Thus we may estimate A0 = 2E{p(l - p)} by

(5.3) b = 2(n, + n 2)/3n

for which

(5.4) &2 = nVaro(D) = E{4 p(l - p)[1 - 3p(1 - p)]/ 3 }.

To bound &2 using our estimates, we need to bound E(p 4 ) given £(p), €(p 2 ) and
£(p 3 ). That problem is addressed in Appendix A7.

With 4 observations on p, we will have estimates of E(p), E(p 2 ), 0(p3 ) and E(p 4 )

and the variance of the natural estimate of Ao may be estimated consistently form the

available data.

5.2 Multiple Observations for Problem 2.

Suppose that for the test of H0 we have two observations on p(l) and one for p(2 ).

We may label our observations by njk = number of trials with j successes on p(1) and

k successes on pý2 ) with j =0,1,2 and k=0,1.

One test statistics that may be used would be based on (n20 + nol)/n which has

expectation A 30 = E(p - p3 ) under the hypothesis H0 . From the observations on

pMl) we can estimate ¢(p(')) and E(p(l)'). From those on p(') we can estimate

E(p(2 )). Given 6(p) and £(p2 ), the bounds on A 30 are derived in Appendix A8. In

7



particular the maximum value is 7r - [E(p 2 )]2/ir which may be estimated by substituting

* = (2n 2o + nio + no1 )/3n for 7r and (n 20 /n) for £(p 2). Thus a natural test statistic

is

T 2 =l{(n 20 +no,)-[ 2I2n2 + O + n no, 3n2o ]}
n 3 2n 2 o + nio - no,

(5.5) l2n2o--nO +2nO, 3n2o
n 3 2n20 +I hi0 -+ no,

We shall not elaborate on bounds on the variance of T2 here. In a personal commu-

nication, K.F. Yu has pointed out that with 2 observations on each of p(') and p(2), the

statistic (n02 + n20) - ni1/2 has mean 0 and variance estimated by no2 + n 20 + n11/4

under the hypothesis. Thus bounds are no longer required.

Appendix.

The following remarks represent a brief summary of the Geometry of Moments which

is a major tool in deriving many of the bounds in this appendix. Let h(X) be a k-
dimensional vector valued function of a random variable X. As the distribution F of

X varies over a convex set of distributions, the range of Eh(X) is a convex set. If the
class of distributions is the set of all distributions over a closed bounded interval I and h

is continuous on I, the range of Eh(X) is the convex set generated by {h(x) : z E I}

and is closed and bounded.

To maximize one coordinate of Eh(X) when the others are specified involves a

boundary point of the convex set which can be represented in terms of a k point distri-

bution (involving at most k points of I). Moreover there is a stpporting hyperplane at

this boundary point which maximizes some linear function EaTh(X), and every one of

the k or fewer points of I maximizes aTh(x) for x E I. Finally the coefficient of the

coordinate being maximized can be taken to be one if the specified expectations lie in an

interior point of their k - 1 dimensional convex range.

As a simple example consider the range of (E(X), E(X ' )) over the class of all

distributions on 10, 11. This is the convex set generated by A = {(X 1,X2 ): 2= X, O<

x, < 1} and is the set bounded by A and B= {(Xi,X 2 ): x2 =z 1, 0_ 1}. It

follows that, subject to EX = p, p 2 < EX 2 < p. Moreover, it is clear that these bounds

may be achieved by the one point distribution at u and a two point distribution which

gives probability p to 1 and 1 - p to 0.

Given any point for which p 2 < /p < M, the class of distributions for which EX = p

and EX 2 
- P2 must have support on a subset of A, the convex hull of which contains

(p, /4). It follows that there are two points q, and q2 in [0,1] such that no distribution

for which P{X > q1} = 1 or for which P{X < q2) = 1 will yield the given values of

8



(EX, EX 2). These two points are obtained by observing where the lines for (1,1) and
(0,0) through (p, /i) intersect the generating parabola segment A. Thus, for 0 < p < 1

(A.1) q1 = (Y- P2)/(' - 1)

and

(A.2) q2 = P2/P.

Al. Special 2 Point and 3 Point Distributions with Specified Mean and

Variance.

We will have occasion to consider several special two point and 3 point distribu-
tions. First we consider the two point distribution on 0 and q with specified values of
(EX, EX 2 ) = (py,) where 0 < p < 1, 0 <q _ 1, and q is assigned probability 6.

Then Oq = p and Oq 2 =/•' and

(A1.1) q = /4/P = q2 and 0 = p 2/p4.

Incidentally, for this distribution

(A1.2a) 30 = EX 3 = 2

and

(A1.2b) p40 = EX4 = G12

Also,

a2

(A1.3a) P30 = E(X - P)3 (2 - P2)

and

(A1.3b) P40 = E(X - I) = _ o2 o6 + p6  -

where o2 P p2 = 14 - p2 is the variance of X.
Next we consider the two point distribution on 1 and q with specified values of

(EX, EX 2 ) = (p, p) where 0 < p 5 1 and 0< q < 1 and q is assigned probability
9. Then, consideration of the transforrnation Y = I - X, yields

(A1.4) q = (p - I2)/(1 -,p) = q, and -= (1 - p)2 /[(1- _A)2 + Orl,

9



and

(A1.5a) A31 = E(X - (p)3  -a ( 1 - P)2 )

and

(A1.5b) A41 = E(X - p)4 = V2(1 - p,a)

A more general two point distribution with specified (p,/u2) will assign probability
9 to p+r(l-0) and 1-0 to p-r6 for r > 0, and 0 < 0 < 1. For this distribution
r and 6 are connected by

(A1.6) a "- r20(1 _ 0).

If we drop the restriction that p - rO and p + r(1 - 6) be in the interval [0,11 we have
9 = 1/2 when r = 2o. Then we will have use for dr/dO and d(rO)/dO. It is easy to see
that dr/dO = r(O - 1/2)

(A1.7) d(rO)/dO = r(1 - 0/2 + 02) > 0.

and

(A1.8) d(r(1 - O))IdO - r(-3/2 + 30/2 - 02) < 0.

Finally, consider the 3 point distribution which assigns probability 0 to 1, 6 to q
and 1 -0- 0 to 0 where 0 < q < 1. For the convex hull of (0,0), (1,1) and (q, q2 )
to contain (p, 12), where 0 < P2 _< , < p < 1, we must have q, _• q _< q9. Then it is
easy to derive q = (/'2 - 0)/(p - 0), and

(A1.9) p2= - pq - ____

1-q 1-q

and

(A1.10) 0 = (p - IA')lq(1 - q)

A2. Bounds on E(X - I)4 and E(X - 1/2)'.
We derive upper and lower bounds on p4 = E(X - p)4 and E(X - 1/2)" subject

to P{0• _ X : 1) = 1 and specified values of p and u4- 2 + 2* The trivial cames
where 12 u p2 and 122 = p are bypassed.

10



Since p4 = E(X _ 1)4 = EX 4 - 4yEX3 + 62p214_ 3p4, we may consider optimizing
E(X 4 - 4pX3). The function g(x) - x4 - 4yx3 - \IX - \ 2X2 has at most one local
maximum and two local minima. It follows that the maximum of g(x) over [0,1] can be
attained on at most 3 points, of which only one can be an interior point. The minimum

can be attained on at most two points.

To attack the maximization problem, we first apply the 3 point distribution of Ap-
pendix Al, and

E(X 4 - 411X 3 ) = O(1 - 4p) + O(q4 - 4/4q 3 )

= p(1 - 4M) - (p - p')[(1 - 4p)(1 + q) + q2]

which attains its maximum at q = 2y - 1/2. But we are restricted to ql :- q -< q2 by
the argument in Al. Hence the restricted maximum of E(X - /)4 occurs when

(A2.1) q = q0 = med(ql,q 2 ,2,u - 1/2).

This implies that we have a 2 point distribution when 2/1-1/2 5 q, or when 2/u-1/2 >_ q2.

In particular, whenever p :5 1/4, we have a 2 point distribution. For 1/4 < p < 3/4, we
may have a 2 or 3 point distribution depending on the value of A'2,

To maximize E(X - 1/2)4 = E(X 4 - 2X 3) + 3y'/2 - //2 + 1/16, we again apply
the 3 point distribution to

E(X 4 - 2X 3 ) = -€ + O(q 4 - 2q3)

= + (A - P2)(1 + q - q2 )

which is maximized at q = 1/2. Thus the restricted maximum occurs when

(A2.2) q = qO = med(q1, q2 ,1/2).

For the minimization problem for E(X - y)4, consider first the 2 point distribution
which minimizes E(X -_ )4 without the restriction of X to 10,1]. That is clearly the

distribution which attaches probability 1/2 to each of p ± a and yields the value a4.
If 0 !_ p - a < p + a < 1, this distribution solves the restricted minimization problem.

Since a2 = p4 -p2 <p.p2 <-1/4, y -0a <0 implies p <a < 1/2. Similarly

p + a > 1 implies p > 1/2. If p - a < 0, we refer to the two point distribution of Al
at /-re and p+r(1-0). Then

vi(0) = E(X -,a)4 = r40(1 - 0)[1 - 39(1 - 0)] = a'[6(1 -6) 3].

Since d(rO)/dO > 0, it follows that as p - rO increases from 1A - a where 6 = 1/2, 6
decreases and v1(O) increases. Thus the minimum value of v1(O), subject to the

11



restrictions, occurs when p - r9 = 0, i.e., for the 2 point distribution at 0 and q2
and the minimum values of E(X - j)4 is

(A2.3) V2(, a) = o,2(Y6 + a 6 )/ 2 (12 + a2 ).

A symmetric argument for the case y + a > 1 yields the two point distribution at q1
and 1 with the minimum value of V2(1 - p, a).

The minimization problem for E(X - 1/2)4 is somewhat more complicated. We note
that E(X - 1/2)4 = Ef(X -p) 4 + 4(p - 1/2)(X - ,)3 ] + 6(p - 1/2)2a2 + (p - 1/2)4 and
that it suffices to minimize

V2 = E{(X - t)4 -)-+ 4(/ - 1/2)(X - u)'}

= a2 [(r2 - 3a 2 ) + (2y - 1)r(1 - 20)]

subject to the restrictions.
Suppose that 0 < p < 1/2. Since r takes on the same value for 0 and 1 - 0, it

is clear that the minimizing value of 0 will be less than 1/2. Ignoring the restriction
0_Mp-r9<py+-r(1-0)_< 1, we have

(A2.4) dv2 = ra2 (20 - 1)[r - ro(9)J
dO

where

(A2.5) ro(0) = (2p - 1)[(0 - 1/2) + (9 - 1/2)-'].

Then, as 0 goes from 0 to 1/2, r decreases form oo to 2a, Or increases from 0 to a
and ro(6) increases from 5(1/2 - p) > 0 to oo. Thus, there is a unique value of 00 of
0 for which ro(0o) = r and O0 < 1/2.

If 0 _< u - Ooro(9o) < p + (1 - 0o)ro(9o) <_ 1, 0o and ro(Oo) define the minimizing
two point distribution. If p - Ooro(90 ) < 0, we see that as 0 decreases from 00, rO
decreases and p - rO increases. At the same time r increases and ro(O) decreases.
Thus dv2 /dO < 0 and v2 increases. Then the minimizing value of v2 subject to the
restrictions will occur when p - rO = 0, i.e., for the two point distribution at 0 and q2.

If 0 < p - 0oro(0o) < 1 < p + (1 - 0o)ro(9o), then as 0 increases from 00 toward
1/2, r(1 - 0) decreases, r decreases, ro(9) increases, and hence v2 increases. Then the
minimizing value, as long as 0 < 1/2, occurs at the two point distribution at 1 and q9.
Since we showed above that the minimizing value of 0 subject to the restrictions is less
than 1/2 we have demonstrated, for p < 1/2, that the minimizing distribution is one of
three two point distributions depending on Oo and ro(Oo).

12



The case of y > 1/2 follows by symmetry. When p = 1/2 we have a' < 1/2 and
the two point distribution on p o , is the minimizing distribution.

A3. Bounds on ar0.
Since Ao = £(d(°)) and 0,2 = £{d(°)(1-d(°))} and d 0o) = 2pi(l-pi) can vary from

0 to 1/2, the range of (Ao,oa2) is the convex hull of A = {(x,z(1 - x)) : 0 < x < 1/2}.
That convex set is bounded by A and B, the straight line segment from (0,0) to
(1/2, 1/4). Thus A and B determine the upper and lower bounds of oa for given A0

and indicate how they may be achieved.
The lower bound is attained when some of the pi are 1/2 and all the others are 0

or 1. The upper bound is attained when all the d40) are equal to A0 . Except when
A0 = 1/2, there are 2 possible values of pi which give the same value of d-0) = Ao.

The bounds can be refined if we are given A0 and ir. Then our problem becomes
that of minimizing and maximizing E{ 2p(1 - p)[1 - 2p(l - p)]} subject to specified values
of £(p) and E(p 2 ). But that reduces to maximizing and minimizing ((p' - 2p-) or

C(p - 1/2)4. That problem is treated in A2.

A4. Mean and Variance of T.
Let T1 = (ainio + a2nol)/n - (a, + a2 )fr(1 - *). Section 3 deals with the case

where a, = a2 = 1. We represent the outcome for the i-th pair by (Xa1 ), X•2)) and

by (Xooi,X 1 oi,Xo0 i,Xi 1 ) where Xjki- 1 if the outcome is (j, k) and 0 otherwise.

Then X} 1) = X1 oi + X1 1 i, X!2) = Xoli + Xi ,

fr, = n- 1 E(Xloi + X 11i) = n-1 E Xý) = (nio + nll)/n
i=1 i=1

and
n n1

* 2 = n-' Z(Xol, + x 112) = n- = (no, + n)/n
i=1 i=1

Let e, = (X!1 ) + Xý2))/2 - pi. Then

nr 2 2n ( n i\2
""2= 7r+- ei 7 =r + 2rn-1 E , + n-f iE

n=I i=1 1=1

and

T= (a, + a2 )(7r 2 -_ ) + n- 1 E [aIXIoi + a2X01, - (a, + a2 )(1 - 2-r)e]
i=1

(A4.1) + (a, + a2)n-2 ei
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where the last term is OP(n- 1 ) and has mean (a1 +a 2 )E[p(')(1-p(1)) +p(2)(1 -p( 2))]/4n

and the second term is E[alp(1)(1 _p(2))+a2p( 2)(1 _p(1))] + O,(n-1/ 2 ) and has the same
variance as n-1 E Si where

S= axX 0, + a2X 01i - (a, + a2 )(1 - 27r)(Xf1) + Xf 2) )/2

Thus

ET =a a) 01 + (r(l) _7()2+ a, a2 7r(1) - 7r(2)

1- ( a, + a2 2

(A4.2) + Efp(1)(1 _ p1l)) + p(2)(1 _ P(2))1/4n}

where O"1 2 - EpM p(2) _ 7r(1)7r(2).

Now we rewrite

Si = 61XP> + b2X!2) - (a,1 + a2 )X 11,

where b, = (a, + a2)7r + (al - a 2)/2 and b2 = (a, + a 2 )7r - (a, - a 2 )/2, and we observe

that Cov(X!I),X 1 i) = Pýt)pt2)"(1 _ Pýl)) and Cov(X!2), Xn) = PýI)-P2)t( _P 2)). It
follows that, neglecting the Op(n-) term of T1 , VarT, ; n-' rT2 where

T2&bp1)1- +bp(2)(1 - p(2 )) + (a, + a2 )2 p(l)p(2 ) (1 - P()P()

(A4.3) - 2(al + a 2 )p()p (2)[b 1(1 - p (1)) + b2(1 - p(2))]}

To derive Equation (3.2) we set a, = a2 = 1 in (A4.2) and note that

A - 2w(1 - 7r)1)= + p(2) -2p-)pt2)) _ (-) + 7r(2))(1 + (2 ))

= r(l) + T(2) - 2o,12 - 27r(1)7r(2) _ 7r(1) _ 7r(2) + (jr(l) +•r(2))2/2

= -2012 - (7r( 1 ) - 7r(2))2/2

To derive Equation (3.4), we set a, = a2 = 1 in (A4.3). Then b, = = 2r. The

matching of coefficients of 47r2, 47r and 1 in these two disparate forms involves showing

that

p()(1 _ p(l)) + p(2)(1 _ p( 2 )) = d - (p(-) _ p(2))2

_2p()p (2)(2 -p(l) _ p(2 )) = -2pd + (p(l) - p(2))2

4pO)p(2)(1 _ p(I)p(2 )) = 4pd - d2 - (pO) - p(2)?
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and this may be facilitated by noticing that p(l) + p(2) = 2p, d = 2p - 2p(1)p(2) and
(p () _ p (2))2 = 4p2 - 4p(1)p(2).

A5. Bounds on A and EXY.
First we consider upper and lower bounds on E(XY) subject to the restrictions that

EX = p, EY = v, and 0 < X < 1 and 0_< Y_< 1 with probability one. Wehave
0<EXY<EX=p. Similarly 0<EXY<v. Moreover E(1-X)(1-Y)>0 and
hence EXY > p + v - 1. Thus

(A5.1) max(0, EX + EY- 1) < E(XY) < min(EX, EY).

Moreover these bounds are easily attained using 2 point distributions on adjacent edges of
the unit square. For example if EX < EY, the distribution which assigns probability v
to (ji/v, 1) and (1- v) to (0,0) yields EXY = i. If p +v > 1, the distribution which
assigns probability (1- I) to (0,1) and t& to (1,(p+v-1)/IA) yields EXY =i+v-1.

To consider A we note that given 7r( 1) and 7r(2) with 7r() _< 7r(2), it follows that

0< pC(1)p(2) < 7r(1) if 0 <ir < 1/2

and

27r - 1 < Ep(1)p(2) < 7r(1 ) if 1/2 < 7r < 1.

Since A = £(p(l) + p(2) - 2p(I)p(2)) = 2(7r - £p(l)p(2)) it follows

(A5.2a) 27r > A > 17rOl) - 7r(2)1 >ý 0 if 0 <5 7r < 1/2

and

(A5.2b) 2(1 - 7r)> > 17r(l) - 7r (2)1 >! 0 if 1/2 <r < 1

A6. Bounds on the Variance of (p(1) - 7r())(p( 2) -_r(2))-

The problem of establishing bounds on £{(p(l) - 7r(1)) 2(p(2) _ 7r( 2))2 } subject to
specified values of 7r(1), W(2) and a 12 may be rephrased as that of minimizing and
maximizing EX 2Y 2 or the variance of XY subject to the restrictions EX = EY -

0, EXY=c, and (X,Y) E R= {(x,y): -a <x :< 1-a, -/35 < _1-P)} where a
and /P, representing 7r01) and Wr(2), are between 0 and 1. Applying A5 we see that

(A6.1) -C2 =-min(afl, (1 - a)(1 - /)) < c < min(a(1 - 0), fl(1 - a)) =-c
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This result can also be derived using the Geometry of Moments by studying where zy -
AIx - A2Y is minimized and maximized.

It is possible to demonstrate that the maximum is attained by a three point distribu-
tion, with two of the points on opposite vertices of R.

The minimization problem reduces to two cases. The easier case is that where -cl <

c _< C2. In that case the two branches of the hyperbola xy = c have points in R and it

is possible to find a two point distribution for which Var(XY) = 0.

For some values of a and P3, it is possible to find values of c where C2 < C -< CI.

In those cases we can show that there is a solution involving at most 4 points, only one of
which can be an interior point. The conjecture that there is a two point solution consisting

of a vertex and another point (on the line from the vertex through the origin) is supported

by numerical calculations.

A7. Bounds on 0.

Since •2 -0 {(4p- 16p2 + 24p - 12p4 )/3} , minimizing and maximizing 3z subject
to specified values of £(p), g(p 2 ) and £(p3 ) is equivalent to maximizing and minimizing

EX 4  subject to the specified values of the first 3 moments and 0 _< X :< 1. As

in Appendix A2, maximizing EX 4 involves at most a 3 point distribution, only one

point of which is an interior point of [0,1] and minimizing EX 4 involves at most a 2

point distribution. The three moments uniquely specify such distributions which may be

calculated directly.

A8. Bounds on A30.

We wish to minimize and maximize E(X - X 3 ) subject to specified values of EX

and EX 2 and 0 < X < 1. This is equivalent to maximizing and minimizing EX 3 or

A3 = E(X - p)3. The function g(x) = x3 + Aix + A2x 2 has at most one local minimum

and one local maximum. It follows that both the minimum and maximum of g on [0,11

can involve at most two points, only one of which can be an interior point of [0,1]. In

the maximization case the boundary point has to be 1, and in the minimization case it is

zero. Thus the minimum and maximum of 13 are P30 and /131 of Appendix Al. In
particular the maximum of E(X - X 3 ) is p - (p2)2/p.
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